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Effects of delay on stability of PDEs

For PDEs arbitrarily small delays may destabilize the system

[Datko, SICON’88], [Logemann et al., SICON’96], [Wang, Guo & Krstic, SICON’11]

▶ The stability of wave eq. is not robust w.r.t. arbitrary small delay:

ztt(ξ, t) = zξξ(ξ, t), ξ ∈ (0, 1),
z(0, t) = 0, zξ(1, t) = −zt(1, t − h)

▶ For h = 0 all solutions are zero for t ≥ 2!
▶ For arbitrary small h > 0 the system has unbounded solutions



Networked control systems are systems, where sensors, controller
and actuators exchange data via communication network.
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Benefits: long distance estimation/control, etc.
Imperfections: variable sampling + delays + ...



Motivation: network-based control of PDEs

▶ Chemical reactors
▶ Air-polluted areas
▶ Multi-agents

Figure 1: 800 drone show in Nanchang: multi-agent deployment



Spatial decomposition
Introduced in [Fridman & Blighovsky, Aut ’12] for the heat equation

zt(x, t) = zxx(x, t) + ϕ (z, x, t) z(x, t) +
N∑

j=1

bj(x)uj(t), zx(0, t) = zx(l, t) = 0

Point measurements:

yj(t) = z(x̄j , tk), x̄j =
xj−1 + xj

2
, t ∈ [tk, tk+1)

Static output-feedback: sampled-data via ZOH

uj(t) = −Kz(x̄j , tk), t ∈ [tk, tk+1),
bj(x) = χ[xj ,xj+1)(x).
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Spatial decomposition

Drawback: many actuators covering (almost) all domain & many sensors.

Challenges:
▶ Few actuators & sensors
▶ Point (e.g. boundary) control & measurement

[Karafyllis & Krstic, Aut’18] introduced sampled-data boundary control for heat eq via modal
decomposition - state-feedback

[Selivanov & Fridman, TAC’19] designed Finite-dimensional boundary observers for heat eq via
modal decomposition in the delayed/sampled-data regimes

Our objective - finite-dim output-feedback via modal decomposition

Crucial - explicit estimates on all quantities of interest.
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Finite-dim. observer-based control - problem formulation
In [Katz & Fridman, Aut’20]:

zt(x, t) = ∂x (p(x)zx(x, t)) + (qc − q(x)) z(x, t) + b(x)u(t), t ≥ 0,
zx(0, t) = z(1, t) = 0, y(t) = z(0, t).

▶ p ∈ C2[0, 1], q ∈ C1[0, 1] satisfying

0 < p∗ ≤ p(x) ≤ p∗, 0 ≤ q(x) ≤ q∗, x ∈ [0, 1]

▶ b ∈ H1(0, 1), b(1) = 0
▶ Non-local actuation and boundary measurement

For simplicity, consider p(x) ≡ 1, q(x) ≡ 0 and qc = q.
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Finite-dim. observer-based control - modal decomposition
Sturm-Liouville problem:

ϕ′′(x) + λϕ(x) = 0, 0 < x < 1; ϕ′(0) = 0, ϕ(1) = 0.

→ Corresponding eigenvalues λ1 < λ2 < ... satisfy limn→∞ λn = ∞.

→ Complete and orthonormal (in L2(0, 1)) sequence of eigenfunctions.

Here λn = π2
(

n − 1
2

)2
, ϕn(x) =

√
2 cos(

√
λnx), n ≥ 1.

Modal decomposition:

z(x, t) =
∞∑

n=1

zn(t)ϕn(x), zn(t) := ⟨z(·, t), ϕn⟩ , t ≥ 0.

Differentiation of ⟨z(·, t), ϕn⟩ + integration by parts:

żn(t) = (−λn + q)zn(t) + bnu(t),
zn(0) = ⟨z0, ϕn⟩ =: z0,n, bn = ⟨b, ϕn⟩ .
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Modal decomposition

▶ Popular in 80s - [Curtain, TAC ’82, ’92], [Balas, JMAA ’88].
▶ Popular again because of

▶ robustness to sampling/delay:
state-feedback [Karafyllis & Krstic, Aut’18],
finite-dimensional observer [Selivanov & Fridman, TAC’19]

▶ input delay compensation:
state-feedback [Prieur & Trelat, TAC’18], [Lhachemi et al, Aut’19]



Works on observer-based control via modal decomposition
▶ Finite-dimensional observer-based control: bounded control & observation operators

1. [Curtain, TAC’82] - restrictive assumptions (bn = 0, n > N0 ).

2. [Balas, JMAA’88] - qualitative result:
for large enough ”residual mode filter” dimension.

3. [Harkort & Deutscher, IJC’11] - 1st step to quantitative results:
conservative estimates on ”output filter” and difficult to compute.

▶ Delayed observer-based control via modal decomposition:

1. [Katz & Fridman & Selivanov, TAC’21] - PDE observer (separation).

Our goal:
Easily verifiable and efficient conditions for finite-dimensional observer-based controller.



Finite-dim. observer-based control - observer design

żn(t) = (−λn + q)zn(t) + bnu(t), n = 1, 2, ...

Let δ > 0 be a desired decay rate. Let N0 ∈ N satisfy

−λn + q < −δ, n > N0.

N0 - controller dimension,
N ≥ N0 - observer dimension.

▶ Finite-dimensional observer: ẑ(x, t) :=
∑N

n=1 ẑn(t)ϕn(x)

˙̂zn(t) = (−λn + q)ẑn(t) + bnu(t) − ℓn

[∑N

n=1 ẑn(t)ϕn(0) − y(t)
]

,

ẑn(0) = 0, 1 ≤ n ≤ N.



Gains selection
Observer and controller gains are designed independently based on N0 modes:

▶ Observer: Let

A0 = diag {−λ1 + q, . . . , −λN0 + q} , L0 = [l1, . . . , lN0 ]T ,

C0 = [c1, . . . , cN0 ] , cn = ϕn(0), n ≥ 1.

Since cn ̸= 0 for 1 ≤ n ≤ N0, (A0, C0) is observable with L0 found from

Po(A0 − L0C0) + (A0 − L0C0)T Po < −2δPo, Po > 0.

Choose ln = 0, n > N0.

▶ Controller: Assume bn = ⟨b, ϕn⟩ ̸= 0 for 1 ≤ n ≤ N0. Let

B0 :=
[
b1 . . . bN0

]T
.

Then (A0, B0) is controllable. Let K0 ∈ R1×N0 satisfy

Pc(A0 + B0K0) + (A0 + B0K0)T Pc < −2δPc, Pc > 0



Control law and estimation error
We propose a N0-dimensional controller:

u(t) = K0ẑN0 (t), ẑN0 (t) = [ẑ1(t), . . . , ẑN0 (t)]T

based on the N -dimensional observer.

Let en(t) = zn(t) − ẑn(t), 1 ≤ n ≤ N . The error equations can be presented as:

ėn(t) = (−λn + q)zn(t) − ln

( ∑N

n=1 cnen(t) + ζ(t)︸︷︷︸
z(0,t)−

∑N

n=1
cnzn(t)

)
, 1 ≤ n ≤ N.

Denote
eN0 (t) = [e1(t), . . . , eN0 (t)]T ,

eN−N0 (t) = [eN0+1(t), . . . , eN (t)]T ,

ẑN−N0 (t) = [ẑN0+1(t), . . . , ẑN (t)]T ,

L = col
{

L0, −L0, 02(N−N0)×1
}

,

K̃ =
[
K0, 01×(2N−N0)

]
,

A1 = diag {−λN0+1 + q, . . . , −λN + q} ,

C1 = [cN0+1, . . . , cN ] , B1 = [bN0+1, . . . , bN ]T .
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Finite-dim. observer-based control - closed-loop system
Closed-loop system for t ≥ 0:

Ẋ(t) = F X(t) + Lζ(t),

żn(t) = (−λn + q)zn(t) + bnK̃X(t), n > N,

where
X(t) = col

{
ẑN0 (t), eN0 (t), ẑN−N0 (t), eN−N0 (t)

}
∈ R2N ,

F =

[
A0 + B0K0 L0C0 0 L0C1

0 A0 − L0C0 0 −L0C1
B1K0 0 A1 0

0 0 0 A1

]
.

Spillover - coupling between finite-dimensional and infinite-dimensional parts

We have
ζ2(t) =

[
z(0, t) −

∑N

n=1 ϕn(0)zn(t)
]2

≤
∥∥zx(·, t) −

∑N

n=1 ϕ′
n(·)zn(t)

∥∥2
=

∑∞
n=N+1 λnz2

n(t)
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Finite-dim. observer-based control - Stability analysis
For H1-stability we use

V (t) = XT (t)P X(t) +
∞∑

n=N+1

λnz2
n(t), 0 < P ∈ R2N×2N .

Differentiating along the closed-loop system:

V̇ + 2δV = XT (t)
[
P F + F T P + 2δP

]
X(t) + 2XT (t)P Lζ(t)

+2
∑∞

n=N+1 λn(−λn + q + δ)z2
n(t) +

∑∞
n=N+1 2zn(t)λnbnK̃X(t).

We apply Young’s inequality to the cross terms:∑∞
n=N+1 2λnzn(t)bnK̃X(t) ≤ 1

α

∑∞
n=N+1 λnz2

n(t) + α ∥b′∥2
L2

∥∥K̃X(t)
∥∥2

.

Then

2
∞∑

n=N+1

λn

(
−λn + q + δ +

1
2α

)
z2

n(t) ≤ −2
(

λN+1 − q − δ −
1

2α

)
ζ2(t)
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Finite-dim. observer-based control - Stability analysis
Let η(t) = col {X(t), ζ(t)}. The stability analysis leads to

V̇ + 2δV ≤ ηT (t)Φη(t) ≤ 0

provided

Φ =
[

P F + F T P + 2δP + α
∥∥b′

∥∥2
K̃T K̃ P L

∗ −2
(

λN+1 − q − δ − 1
2α

)]
< 0.

Can be converted to LMI by Schur complement.

Observations:
▶ The LMI dimension grows with N

▶ ∥P ∥ can grow - may lead to infeasibility for all N ∈ N

Our contribution:
▶ Derivation of constructive LMI condition.
▶ Proof of feasibility for large N

(based on asymptotic perturbation analysis to bound ∥P ∥).
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Finite-dim. observer-based control - Stability analysis
▶ Summarizing:

Given δ > 0, if there exist 0 < P ∈ R2N×2N and α > 0 that satisfy the LMI,
then

∥z(·, t)∥2
H1 + ∥z(·, t) − ẑ(·, t)∥2

H1 ≤ Me−2δt ∥z0∥2
H1 ,

with some constant M > 0. Moreover, the LMI is always feasible for large enough N .

Other cases treated in [Katz & Fridman, Aut ’20] :
→ Non-local measurement and actuation - L2 and H1 stability

→ Dirichlet actuation and non-local measurement - H− 1
2 stability (V =

∑
λ−1

n z2
n)

In this case,
|bn| ≈

√
λn

which is difficult to compensate in the Lyapunov analysis even for the L2-norm.
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Point measurement & actuation - dynamic extension
[Katz & Fridman, CDC ’20; TAC ’22]
Kuramoto-Sivashinsky equation (KSE)

zt(x, t) = −zxxxx(x, t) − νzxx(x, t), t ≥ 0,
z(0, t) = u(t), z(1, t) = 0,
zxx(0, t) = 0, zxx(1, t) = 0.

Measurement : y(t) = z(x∗, t), x∗ ∈ (0, 1)

▶ Mixed Dirichlet boundary conditions.
▶ Point measurement and boundary actuation - unbounded operators.

Dynamic extension [Curtain & Zwart, 95], [Prieur & Trélat, Aut ’18], [Katz & Fridman, Aut
’21]:

w(x, t) = z(x, t) − r(x)u(t), r(x) := 1 − x

Results in better behaved {bn}∞
n=1 ⇒ convergence in stronger norms.
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Point measurement & actuation - dynamic extension
Existing results on KSE:

▶ Distributed state-feedback/observer-based control via modal decomposition
[Christofides & Armaou. SCL ’00]

▶ Boundary control, small anti-diffusion
[Liu & Krstić. Nonlin Analysis. ’01]

▶ State-feedback stabilization of KSE under boundary/non-local actuation
[Cerpa. Commun. Pure Appl. Anal, ’10], [Cerpa, Guzman & Mercado. ESAIM, ’17],
[Guzman, Marx & Cerpa. CPDE ’19]

→ Different boundary conditions ⇒ no explicit estimates on eigenvalues and
eigenfunctions

→ Theoretically possible but computationally expensive



Point measurement & actuation - dynamic extension
Equivalent ODE-PDE system:

u̇(t) = v(t), wt(x, t) = −wxxxx(x, t) − νwxx(x, t) − r(x)v(t)

with
u(0) = 0,

w(0, t) = 0, w(1, t) = 0,

wxx(0, t) = 0, wxx(1, t) = 0.

▶ New measurement: y(t) = w(x∗, t) + r(x∗)u(t).
▶ u(t) - additional state, v(t) - control input
▶ Given v(t), u(t) is computed by

u̇(t) = v(t), u(0) = 0

Modal decomposition using Sturm-Liouville operator for KSE:

λn = π2n2, ϕn(x) =
√

2 sin(
√

λnx), n ≥ 1



Point measurement & actuation - modal decomposition

w(x, t) =
∞∑

n=1

wn(t)ϕn(x)

⇓
ẇn(t) = (−λ2

n + νλn)wn(t) + bnv(t), wn(0) = ⟨z0, ϕn⟩ ,

bn = −
√

2
λn

ℓ2(N) sequence, nonzero elements.

Lyapunov H1-stability analysis leads to LMIs:[
P F + F T P + 2δP + 2α

π2N
K̃T K̃ P L

∗ −β

]
< 0,[

−λN+1 + ν + 2δ+β
2λN+1

1√
2

∗ −α

]
< 0.

where P > 0 is a matrix and α, β > 0 are scalars.

Feasibility of the LMIs leads to

∥w(·, t)∥H1 + |u(t)| + ∥w(·, t) − ŵ(·, t)∥H1 ≤ Me−δt ∥w(·, 0)∥H1 .

with some constant M > 0.
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L2-gain and ISS analysis
In [Katz & Fridman,TAC ’22] we consider

zt(x, t) = −zxxxx(x, t) − νzxx(x, t) + d(x, t),
z(0, t) = u(t), z(1, t) = 0, zxx(0, t) = zxx(1, t) = 0

with in-domain point measurement

y(t) = z(x∗, t) + σ(t), x∗ ∈ (0, 1).

The disturbances satisfy

d ∈ L2((0, ∞); L2(0, 1)) ∩ H1
loc((0, ∞); L2(0, 1)),

σ ∈ L2(0, ∞) ∩ H1
loc(0, ∞).

Dynamic extension:
w(x, t) = z(x, t) − r(x)u(t), r(x) := 1 − x



L2-gain and ISS analysis
Let γ > 0 and ρw, ρu ≥ 0 be scalars. We introduce the performance index

J =
∫ ∞

0

[
ρ2

w ∥w(·, t)∥2
L2 + ρ2

uu2(t) − γ2
(

∥d(·, t)∥2
L2 + σ2(t)

)]
dt.

We find conditions that guarantee along the closed-loop

V̇ + 2δV + W ≤ 0,

W = ρ2
w ∥w(·, t)∥2

L2 + ρ2
uu2(t) − γ2

(
∥d(·, t)∥2

L2 + σ2(t)
)

,

V (t) = |XN (t)|2P +
∑∞

n=N+1 λnw2
n(t)

⇓

▶ δ = 0 ⇒ J ≤ 0
▶ δ > 0 and ρw = ρu = 0 ⇒ ISS, i.e. for some M > M > 0:

M
[
|u(t)|2 + ∥w(·, t)∥2

H1

]
≤Me−2δT ∥w(·, 0)∥2

H1

+ γ2

2δ
sup0≤t≤T

[
∥d(·, t)∥2

L2 + σ2(t)
]

∀T > 0,
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L2-gain and ISS analysis
Our L2-gain analysis results in the following LMI:

Ψ(1)
N =

 Φ(1)
N

+ Ξ P L
∗ −2

(
θ

(1)
N+1 −

λN+1
2α −

λN+1
2γ2

) P P L
0 0

∗ −γ2I

 < 0,

Φ(1)
N = P F + F T P + 2δP + 2α

π2N
K̃T

0 K̃0,

Ξ = ΞT
1 Ξ1, Ξ1 =

[
ρu 0 0 0 0
0 ρwIN0 ρwIN0 0 0
0 0 0 ρwIN−N0 ρwIN−N0

]
.

Novelty: proof of the LMI feasibility for large enough γ and N

▶ Ξ: positive term, which is not multiplied by a decision variable
and does not decay with N (compare with 2α

π2N
K̃T K̃)

▶ For ISS with d(x, t) ≡ 0, the LMI feasibility for N implies its feasibility for N + 1.
Thus, increasing N does not deteriorate the performance.



Reduced-order LMIs
[Katz et al, ECC ’21 & Aut, under review]

Consider heat equation with Neumann actuation

zt(x, t) = zxx(x, t) + qz(x, t),
zx(0, t) = 0, zx(1, t) = u(t).

Non-local measurement
y(t) = ⟨c, z(·, t)⟩ , c ∈ L2(0, 1).

▶ No dynamic extension for L2-stability:

→ λn = π2n2, n ≥ 0 ; ϕ0(x) = 1, ϕn(x) =
√

2 sin(
√

λnx), n ≥ 1

żn(t) = (−λn + q)zn(t) + bnu(t), t ≥ 0,

b0 = 1, bn = (−1)n
√

2, − ℓ∞(N)

→ The estimation error tail ζ(t) satisfies

ζ2(t) ≤ ∥c∥2
N︸︷︷︸∑

n=N+1
c2

n
N→∞

→ 0

∑∞
n=N+1 z2

n(t),
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Reduced-order closed-loop system
The reduced-order closed-loop system is given by

Ẋ0(t) = F0X0(t) + L0C1eN−N0 (t) + L0ζ(t),
żn(t) = (−λn + q)zn(t) + bnK0X0(t), n > N.

where
F0 =

[
A0 + B0K0 L0C0

0 A0 − L0C0

]
,

X0(t) = col
{

ẑN0 (t), eN0 (t)
}

.

What about ẑN−N0 (t) and eN−N0 (t)?

˙̂zN−N0 (t) = A1ẑN−N0 (t) + B1K0X0(t) ⇒ exp. decaying provided X0(t) is
ėN−N0 (t) = A1eN−N0 (t) ⇒ exp. decaying

▶ Advantages of the reduced-order closed-loop:

→ Takes into account the fast-slow structure of the dynamics
→ Reduced-order LMIs, which are more computationally efficient
→ Trivializes proofs of LMIs feasibility for large N ,

and of feasibility for N ⇒ N + 1
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What about ẑN−N0 (t) and eN−N0 (t)?
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Stability analysis
For L2-stability we use

V (t) = V0(t) + pe

∣∣eN−N0 (t)
∣∣2

, V0(t) = |X0(t)|2P0
+

∑∞
n=N+1 z2

n(t)

where 0 < P ∈ R(2N0+1)×(2N0+1), pe → ∞ leading to the reduced-order LMI:[Φ0 P0L0 0
∗ −2 (λN+1 − q − δ) ∥c∥−2

N
1

∗ ∗ −
α∥c∥2

N
λN+1

]
< 0,

Φ0 = P0F0 + F T
0 P0 + 2δP0 + 2α

π2N
KT

0 K0.

→ The LMI dimension does not grow with N

▶ In the numerical example we easily verify LMIs for N = 30, whereas feasibility of the
full-order LMIs could be verified for N ≤ 9.

▶ Since we don’t use dynamic extension, we can treat
general time-varying delays & sampled-data control via a ZOH

▶ To enlarge delays, in [Katz & Fridman, Aut, under review] we compensate constant part
of an input delay via classical predictor.
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Delayed implementation - problem formulation
[Katz & Fridman, Aut ’21]

zt(x, t) = zxx(x, t) + qz(x, t) + b(x)u(t − τu(t)),
zx(0, t) = 0, z(1, t) = 0,

y(t) = z(0, t − τy(t))

Consider b ∈ H1(0, 1), b(1) = 0.
▶ τy(t) - known measurement delay, τy(t) ≤ τM

▶ τu(t) - unknown input delay, τu(t) ≤ τM

▶ C1 delays or sawtooth delays (correspond to sampled-data or networked control)

żn(t) = (−λn + q)zn(t) + bnu(t − τu(t)),
zn(0) = ⟨z0, ϕn⟩ =: z0,n, bn = ⟨b, ϕn⟩ .

Let N0 ∈ N satisfy
− λn + q < −δτ , n > N0.

N0 - the controller dimension. N ≥ N0 - the observer dimension.
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Delayed implementation - observer design
▶ Finite-dimensional observer: ẑ(x, t) :=

∑N

n=1 ẑn(t)ϕn(x).

˙̂zn(t) = (−λn + q)ẑn(t) + bnu(t) − ℓn

[∑N

n=1 cnẑn(t − τy(t)) − y(t)
]

,

ẑn(t) = 0, t ≤ 0, cn = ϕn(0) =
√

2, 1 ≤ n ≤ N.

{ℓn}N
n=1 - scalar observer gains.

▶ Controller: u(t) = K0ẑN0 (t).

▶ Closed-loop system for t ≥ 0:

Ẋ(t) = F X(t) + F1X(t − τy(t)) + F2K̃X(t − τu(t)) + Lζ(t − τy(t)),

żn(t) = (−λn + q)zn(t) + bnK̃X(t − τu(t)), n > N.

ζ2(t − τy(t)) ≤
∞∑

n=N+1

λnz2
n(t − τy(t))



Delayed implementation - closed-loop system
We use Lyapunov functional for H1-stability

V (t) = Vnom(t) +
∑2

i=1 VSi
(t) +

∑2
i=1 VRi

(t),
Vnom(t) = XT (t)P X(t) +

∑∞
n=N+1 λnz2

n(t),

▶ VSi
(t) and VRi

(t) compensate delays in X(t)

▶ Halanay inequality to compensate ζ(t − τy(t))

Theorem (Halanay’s inequality)

Let 0 < δ1 < δ0 and V : [−τ, ∞) −→ [0, ∞) be an absolutely continuous s.t.

V̇ (t) + 2δ0V (t) − 2δ1 sup
−τ≤θ≤0

V (t + θ) ≤ 0, t ≥ 0.

Then V (t) ≤ e−2δτ t sup−τ≤θ≤0 V (θ), t ≥ 0 where δτ = δ0 − δ1e2δτ τ .

−2δ1 sup−τM ≤θ≤0 V (t + θ) ≤ −2δ1 |X(t − τy(t))|2P −2δ1ζ2(t − τy(t))

▶ We prove: the resulting LMIs are feasible for large N and small τM .
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Predictor/Subpredictors
Q: What about large delay compensation?

In [Katz & Fridman, L-CSS ’21] we consider

zt(x, t) = zxx(x, t) + qz(x, t), x ∈ [0, 1], t ≥ 0,

zx(0, t) = 0, zx(1, t) = u(t − r)

with known delay r and

y(t) = ⟨c, z(·, t)⟩ , t ≥ 0, c ∈ L2(0, 1)

Challenge:
Observer-based L2-stabilization for arbitrarily large delay r via efficient reduced-order LMIs.



Predictor/Subpredictors via reduced-order LMIs
To compensate r we employ a chain of M sub-predictors

ẑN0
1 (t − r) 7→ · · · 7→ ẑN0

i

(
t − M−i+1

M
r
)

7→ · · · 7→ ẑN0
M (t − r

M
) 7→ zN0 (t)

Here ẑN0
M (t) predicts the value of zN0 (t + r

M
).

Intuition: ẑN0
1 (t) ≈ zN0 (t + r) ⇒ u(t − r) ≈ −K0zN0 (t).

Novelty: Closed-loop system for t ≥ 0 is given by

żN0 (t) = (A0 − B0K0)zN0 (t) + B0KeXe(t)
Ẋe(t) = FeXe(t) + Ge

[
Xe

(
t − r

M

)
− Xe(t)

]
+ Leζ

(
t − r

M

)
+LeC1e−A1 r

M eN−N0 (t),
żn(t) = (−λn + q)zn(t) − bnK0zN0 (t),

+bnKeXe(t), n > N.

▶ Closed-loop system includes the state zN0 (t) (not ẑN0 (t)), subpredictor estimation errors
Xe(t) and tail zn(t), n > N

▶ The formulation eliminates r from ODEs of zN0 (t) and zn(t), n > N and decreases it to
r

M
in Xe(t).

▶ Reduced-order closed-loop system
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▶ Closed-loop system includes the state zN0 (t) (not ẑN0 (t)), subpredictor estimation errors
Xe(t) and tail zn(t), n > N

▶ The formulation eliminates r from ODEs of zN0 (t) and zn(t), n > N and decreases it to
r

M
in Xe(t).

▶ Reduced-order closed-loop system
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M (t) predicts the value of zN0 (t + r

M
).

Intuition: ẑN0
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Predictor/Subpredictors via reduced-order LMIs
We carry out L2-stability analysis of the reduced-order closed-loop system, leading to
reduced-order LMIs.

Challenge: Is feasibility of the LMIs guaranteed for arbitrarily large r > 0?
This problem is non-trivial, due to coupling in the closed-loop system of the finite and infinite
dimensional parts.

We prove that the derived LMIs are feasible for any r > 0 provided M and N are large enough.
▶ We first fix M by considering only the ODEs of the last subpredictor error.
▶ By induction, we construct a Lyapunov function for the subpredictor errors, taking into

account the cascaded structure of the ODEs.
▶ Choose the remaining decision variables, which depend on N and take N → ∞ to show

feasibility of the LMIs
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Predictor/Subpredictors via reduced-order LMIs
We also consider compensation of r using a classical predictor:

z̄(t) = eA0r ẑN0 (t) +
∫ t

t−r
eA0(t−s)B0u(s)ds, u(t) = −K0z̄(t)

The resulting reduced-order closed-loop system consists of ODEs for
z̄(t), eN0 (t) and zn(t), n > N .

Lyapunov L2-stability analysis leads to reduced-order LMI.

For the case of a classical predictor, we prove LMIs feasibility for arbitrary constant delays
provided observer dimension is large.
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Sampled-data implementation via dynamic extension
In [Katz & Fridman, Aut ’21], we consider:

zt(x, t) = zxx(x, t) + az(x, t), t ≥ 0,
zx(0, t) = 0, z(1, t) = u(t)

in the presence of two independent communication networks.

Sampled-data in measurements:
▶ Sampling instances 0 = s0 < s1 < · · · < sk < . . . , limk→∞ sk = ∞

sk+1 − sk ≤ τM,y , ∀k ∈ Z+, τM,y > 0.

▶ Quantizer q : R → R
|q[r] − r| ≤ ∆, for all r ∈ R

where ∆ > 0 is the quantization error bound

Discrete-time in-domain point measurement:

y(t) = q [z(x∗, sk)], x∗ ∈ [0, 1), t ∈ [sk, sk+1).

Remark: We consider H1-ISS analysis of the closed-loop systems ⇒ possible to also consider
saturation.
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Sampled-data implementation via dynamic extension
Sampled-data in actuation:

▶ Controller holding times 0 = t0 < t1 < · · · < tj < . . . , limj→∞ tj = ∞

tj+1 − tj ≤ τM,u, ∀j ∈ Z+, τM,u > 0.

▶ u(t) is generated by a generalized hold device:

u̇(t) = q[v(tj)], t ∈ [tj , tj+1), u(0) = 0.

Generalized hold - given v(tj), the control signal is computed as:

u(t) = u(tj) + q[v(tj)](t − tj), t ∈ [tj , tj+1), j = 0, 1, ...
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Sampled-data implementation via dynamic extension
Dynamic extension:

w(x, t) = z(x, t) − u(t)
leads to the equivalent ODE-PDE system

u̇(t) = q [v(tj)] , t ∈ [tj , tj+1),
wt(x, t) = wxx(x, t) + aw(x, t) + au(t) − q [v(tj)] ,

with homogeneous boundary conditions and

y(t) = q [w(x∗, sk) + u(sk)] , t ∈ [sk, sk+1)

(N0 + 1)-dimensional observer-based controller

u̇(t) = q [v(tj)] , t ∈ [tj , tj+1),

v(tj) = −K0ŵN0 (tj),

ŵN0 (t) = [u(t), ŵ1(t), . . . , ŵN0 (t)]T
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Sampled-data implementation via dynamic extension
Reduced-order closed-loop system for t ≥ 0:

Ẋ0(t) = F0X0(t) + LCΥy(t) − BK̃0Υu(t) + Bσu(t)
+LC1e−A1τy eN−N0 (t) + Lζ(t − τy) + Lσy(t),

ẇn(t) = (−λn + a)wn(t) + bn

[
K̃aX0(t) + K̃0Υu(t)

]
−bnσu(t), n > N, t ≥ 0

Here
τy(t) = t − sk, t ∈ [sk, sk+1), τy(t) ≤ τM,y

The quantization errors

σy(t) = q [w(x∗, t − τy) + u(t − τy)]
−w(x∗, t − τy) − u(t − τy),

σu(t) = q
[
−K0ŵN0 (tj)

]
+ K0ŵN0 (tj), t ∈ [tj , tj+1).

are treated as disturbances
max

(
∥σu∥∞ , ∥σy∥∞

)
≤ ∆.



Sampled-data implementation via dynamic extension
Reduced-order closed-loop system for t ≥ 0:
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Sampled-data implementation via dynamic extension
For H1-ISS analysis, we use a Wirtinger-based Lyapunov functional - efficient for sampled-data
control

Challenge:
V (t) may have jump discontinuities at sk, k ∈ Z+ and inside the intervals [sk, sk+1),
where we want to apply Halanay’s inequality.

Figure 2: Possible behavior of V (t)



Sampled-data implementation via dynamic extension
We prove a novel form of Halanay’s inequality for ISS

Theorem

Let V : [a, b) → [0, ∞) be a bounded function, where b − a ≤ h for h > 0.
Assume V (t) is continuous on [ti, ti+1), i = 0, . . . , N − 1, where

a =: t0 < t1 < · · · < tN−1 < tN := b,

and
lim

t↗ti

V (t) ≥ V (ti), i = 1, 2, . . . , N − 1.

Assume further that for some d ≥ 0 and δ0 > δ1 > 0

D+V (t) ≤ −2δ0V (t) + 2δ1 supa≤θ≤t V (θ)+d, t ∈ [a, b)

where D+V (t) is the right upper Dini derivative, defined by

D+V (t) = lim sup
s→0+

V (t + s) − V (t)
s

.

Then
V (t) ≤ e−2δτ (t−a)V (a) + d

∫ t

a
e−2δ(t−s)ds, t ∈ [a, b)

where δ = δ0 − δ1 and δτ > 0 solves δτ = δ0 − δ1e2δτ h.



Sampled-data implementation via dynamic extension
H1-ISS analysis leads to Reduced-order LMIs for ISS

Feasibility of the LMIs guarantees

∥w(·, t)∥2
H1 + ∥ŵ(·, t)∥2

H1 + u2(t)
≤ M0e−2δτ t ∥w(·, 0)∥2

H1 + r2∆2, t ≥ 0

▶ r - explicitly estimated in the analysis

The LMIs are always feasible for large enough N and small enough τM,y , τM,u,
their feasibility for N implies feasibility for N + 1.
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Semilinear PDEs
Q: Can our approach be generalized to nonlinear equations?

▶ [Karafyllis, IJC ’21] - design of CLF for global boundary L2-stabilization of semilinear
parabolic PDEs. Semilinearity exhibits linear growth bound

▶ In [Katz & Fridman, Aut. Under review] we consider state-feedback stabilization of a
semilinear heat equation with unknown/known semilinearity exhibiting a linear growth
bound

In [Katz & Fridman, L-CSS ’22] we consider regional stabilization of

zt(x, t) = −zxxxx(x, t) − νzxx(x, t) − 1
2

(
z2(x, t)

)
x

,

z(0, t) = 0, z(1, t) = u(t), zxx(0, t) = 0, zxx(1, t) = 0

dynamic extension: Let κ > 0

w(x, t) = z(x, t) − r(x)u(t), r(x) = x

leads to
u̇(t) = −κu(t) + v(t), u(0) = 0,
wt(x, t) = −wxxxx(x, t) − νwxx(x, t) + κr(x)u(t)

−r(x)v(t) − [w(x, t) + xu(t)] [wx(x, t) + u(t)],
w(0, t) = w(1, t) = wxx(0, t) = wxx(1, t) = 0.
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▶ [Karafyllis, IJC ’21] - design of CLF for global boundary L2-stabilization of semilinear
parabolic PDEs. Semilinearity exhibits linear growth bound

▶ In [Katz & Fridman, Aut. Under review] we consider state-feedback stabilization of a
semilinear heat equation with unknown/known semilinearity exhibiting a linear growth
bound

In [Katz & Fridman, L-CSS ’22] we consider regional stabilization of

zt(x, t) = −zxxxx(x, t) − νzxx(x, t) − 1
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Semilinear PDEs
Modal decomposition: w(x, t) =

∑∞
n=1 wn(t)ϕn(x)

ẇn(t) =
(

−λ2
n + νλn

)
wn(t) + κbnu(t) − bnv(t)

−w
(1)
n (t) − w

(2)
n (t), t ≥ 0,

w
(1)
n (t) = ⟨[w(·, t) + ·u(t)] wx(·, t), ϕn⟩,

w
(2)
n (t) = ⟨w(·, t) + ·u(t), ϕn⟩ u(t)

Controller:
v(t) = −KwN (t), wN (t) = col {u(t), wn(t)}N

n=1 .

Closed-loop system for t ≥ 0:

ẇN (t) = (A − BK)wN (t)−wN,(1)(t) − wN,(2)(t),
ẇn(t) =

(
−λ2

n + νλn

)
wn(t) + κbnu(t) − bnv(t)

−w
(1)
n (t) − w

(2)
n (t).



Semilinear PDEs
For H1-stability analysis of the closed-loop system, we consider

V (t) =
∣∣wN (t)

∣∣2
P

+
∞∑

n=N+1

λnw2
n(t),

where 0 < P ∈ R(N+1)×(N+1).

To compensate semilinearity, let 0 < σ ∈ R and assume

∥wx(·, t)∥2 + u2(t) < σ2, t ∈ [0, ∞).

We use the Young/Sobolev inequalities and Parseval’s equality in the cross terms

−2
∑∞

n=N+1 λnwn(t)w(1)
n (t) ≤ α2

∑∞
n=1 λ2

nw2
n(t)

− 1
α2

∣∣wN,(1)(t)
∣∣2

+ 1
α2

∑∞
n=1

[
w

(1)
n (t)

]2
.

and
1

α2

∑∞
n=1

[
w

(1)
n (t)

]2 Pars.= 1
α2

∫ 1
0 [w(x, t) + xu(t)]2w2

x(x, t)dx

Sob.
≤ 2σ2

α2
∥wx(·, t)∥2 = 2σ2

α2

∣∣wN (t)
∣∣2
Λ

+ 2σ2

α2

∑∞
n=N+1 λnw2

n(t)
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Semilinear PDEs
Our H1-stability analysis leads to LMIs which

▶ Involve σ as a tuning parameter
▶ Allow for design of controller gains
▶ Are always feasible for small enough σ > 0

Feasibility of the LMIs leads to

∥w(·, t)∥2
H1 + u2(t) ≤ Me−2δt ∥w(·, 0)∥2

H1 , t ≥ 0,

The assumption involving σ > 0 requires an estimate on the domain of attraction, in terms of
the original state z(x, t).

We derive a lower bound ρ > 0 such that
▶ It can be computed explicitly in terms of σ and the LMI decision variables
▶ If ∥zx(·, 0)∥2 < ρ2 then solution of the closed-loop system exists for all time and is

H1-exp. stable.
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Conclusions
A dream about efficient finite-dimensional observer-based control comes true:

a LMI-based method is introduced for parabolic PDEs via modal decomposition.

→ Observer dimension, ISS & L2-gain, delay bounds are found from LMIs.
→ LMIs are proved to be asymptotically feasible and

they are only slightly conservative in examples.
→ LMIs may be verified by users without any background in PDEs!
→ Large input delays are compensated by predictors.
→ For point measurement and actuation via dynamic extension,

sampled-data implementation employs generalized hold
→ Our approach can be extended to semilinear parabolic PDEs

Publication list: https://www.ramikatz.com/
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